**薄膜太陽能電池研討會** 主辦單位國立台灣大學 協辦單位聯相光電股份有限公司



# 新材料微晶矽鍺薄膜太陽電池

緣能與環境研究所 薄膜太陽電池研究室 張佳文 研究員 changcw@itri.org.tw 03-591-5371

2010/11/15 PM3:00~5:40 台大博理館 101演講廳



# Outline

### • Introduction

- Conventional thin film silicon solar cell
   Challenges in a-Si:H and a-Si:H/µc-Si solar cell
- A new concept of thin film  $\mu$ c-Si<sub>1-x</sub>Ge<sub>x</sub>:H solar cell
  - Advantages and opportunities
  - Challenges
  - Properties of  $\mu$ c-Si<sub>1-x</sub>Ge<sub>x</sub>: H thin film
    - ESR spin densities (neutral dangling bonds)
    - Carrier densities

#### • Conclusions



### Si thin film

### Si bulk-type



薄膜太陽能電池研討會 2010/11/15 張佳文 本簡報著作權屬工業技術研究院所有,未經許可不准引用或翻印



## Why Silicon Thin Film for Solar Cells?



### 1000 x thicker



Silicon Thin Film Technology:

- low material consumption 0.3 μm to 3 μm
- established large area
- deposition techniques (Flat Panel Industry)
- low process temperatures (< 300°C)</li>
- low-cost substrates (glass, plastics, metal, stainless)
- higher energy yield
- low energy pay back time

Silicon-based as raw material:

- abundantly available
- non-toxic & ecologically harmless

薄膜太陽能電池研討會 2010/11/15 張佳文 本簡報著作權屬工業技術研究院所有,未經許可不准引用或翻印





# PV technologies



Quantum effect—Quantum dot, multi-quantum-well





### 日本NEDO計畫電池及模組之性能目標(轉換效率%)

| 個別     |                    | 現狀               |                     | 2017 <b>年</b>    |                     | 2025 <b>年</b>    |                     | 2050 <b>年</b> |
|--------|--------------------|------------------|---------------------|------------------|---------------------|------------------|---------------------|---------------|
|        | 太陽電池1)             | <b>模組</b><br>(%) | <b>電池</b> 5)<br>(%) | <b>模組</b><br>(%) | <b>電池</b> 5)<br>(%) | <b>模組</b><br>(%) | <b>電池</b> 5)<br>(%) | 模組(%)         |
| 別<br>技 | 結晶矽 <sup>2)</sup>  | ~16              | 25                  | 20               | 25                  | 25               | (30)                |               |
| 及術的開發  | 矽薄膜                | ~11              | 15                  | 14               | (18)                | 18               | 20                  | 40%超          |
|        | CIS <b>系</b>       | ~11              | 20                  | 18               | 25                  | 25               | 25                  | 高粱率へ<br>陽雷池   |
|        | 化合物系 <sup>3)</sup> | ~25              | 41                  | 35               | 45                  | 40               | 40                  | (追加           |
|        | 染料敏化               | -                | 11                  | 10               | 15                  | 15               | 15                  | 開發)           |
|        | <b>有機系</b> 4)      |                  | 5                   | 10               | 12                  | 15               | 15                  |               |

1) 電池的技術指標以實驗室小面積規格為主。模組則為實用化技術階段。

工研院 張佳文翻譯 (2010)

- 2) 結晶矽不予以單晶、多晶分類,以使用矽基板之太陽電池為設定。
- 3) 集光時的轉換效率。
- 4) 新型太陽電池之有機系太陽電池也為設定之開發目標。
- 5) 為達成模組目標所設定之電池最低轉換效率。

薄膜太陽能電池研討會 2010/11/15 張佳文



# Thin Film competition

- **Si(Ge)** Abundance, environment safety, ubiquitous Limited efficiency, equipment cost (throughput) Multi-junction
- CdTe Low cost, process simply, high throughput Toxicity (Cd), rare element (Te), recycling problem Single junction
- **CIGS** High potential efficiency (~20%), tunable Eg Toxicity (In compound), rare element (In) Single junction





薄膜太陽能電池研討會 2010/11/15 張佳文 本簡報著作權屬工業技術研究院所有,未經許可不准引用或翻印



Copyright 2010 ITRI 工業技術研究院

10



### Benchmarks

Small area cell (<1 cm<sup>2</sup>)

| single           |                  |                                    | tandem                      |                               |                               | triple                        |                                 |
|------------------|------------------|------------------------------------|-----------------------------|-------------------------------|-------------------------------|-------------------------------|---------------------------------|
| a-Si:H           | μc-Si:H          | a-Si:Η<br>μc-Si:Η                  | a-Si:H<br>poly-Si:H         | a-SiGe:H                      | a-SiGe:H<br>a-SiGe:H          | a-Si:H<br>nc-Si:H<br>nc-Si:H  | a-SiGe:H<br>a-SiGe:H<br>nc-Si:H |
| a-Si             | μ <b>c-Si</b>    | a-Si/                              | a-Si/                       | a-Si/                         | a-Si/                         | a-Si/                         | a-Si/                           |
|                  |                  | μc-Si                              | poly-Sí                     | a-SiGe                        | a-SiGe/<br>a-SiGe             | nc-Si/<br>nc-Si               | a-SiGe/<br>nc-Si                |
| IMT<br>Oerlikon  | Kaneka           | IMT<br>Oerlikon                    | Kaneka                      | BP Solar,<br>Sanvo            | Uni-Solar                     | Uni-Solar                     | Uni-Solar                       |
| 10.1% (s)<br>pin | 10.9% (i)<br>pin | 13.7% (i)<br>pin<br>9.8 (i)<br>nip | 14.8% (i)<br>12% (s)<br>pin | 11.6% (i)<br>10.6% (s)<br>pin | 15.2% (i)<br>13.0% (s)<br>nip | 13.8% (i)<br>13.2% (s)<br>nip | 14.5% (i)<br>12.6% (s)<br>nip   |

薄膜太陽能電池研討會 2010/11/15 張佳文



## Materials cost

gas *price* (per 1 liter)  $SiH_4$ :  $GeH_4$ :  $H_2 = 1$ : 100: 0.05

Ref. A. Baumann, 2004

| Process                                   | Material     | Utilization rate (%) | Cost (\$/kg) | Thickness (µm) | Cost (\$/W) |       |
|-------------------------------------------|--------------|----------------------|--------------|----------------|-------------|-------|
| CdTe sublimation (commercial)             | CdTe         | 75                   | 170          | 4              | 0.05        |       |
| CdTe electrodeposition (pilot line)       | Te           | 95                   | 250          | 2              | 0.02        |       |
| In-line a-Si GD (commercial)              | Ge           | 10                   | 3000         | 1              | 0.12        |       |
| Box carrier (batch) a-Si (commercial)     | Ge           | 25                   | 3000         | 1              | 0.05 @      | 1 μm  |
| High-rate a-Si (experimental)             | Ge           | 10                   | < 3000       | 1              | 0.12        | •     |
| High-rate CIGS evaporation (experimental) | In           | 50                   | 400          | 2              | 0.03        |       |
| Sputtering CIGS (experimental)            | In target    | 75                   | 800          | 2              | 0.043       |       |
| Silicon film <sup>TM</sup> (experimental) | Si           | 75                   | 20           | 50             | 0.03 @      | 50 μm |
| Single crystal silicon                    | Si (feedstoc | :k) 45               | 20           | 320            | 0.32        | •     |

#### Ref. B.A. A'ndersson, Energy 23 (1998) 407-411.

Table 1. Materials requirements and indicators for the solar cells in four solar energy systems, each based on a specific thinfilm technology supplying 100,000 TWh/yr.

|                     | Materials<br>requirements<br>(g/m <sup>2</sup> ) | Total material<br>requirements <sup>b</sup><br>(Gg) | Total material<br>requirements<br>/reserves <sup>e</sup> | Total material<br>requirements<br>/max.<br>resources <sup>d</sup> | Annual<br>material<br>requirements <sup>e</sup><br>/refined<br>materials <sup>r</sup> | Potential losses <sup>E</sup> /<br>weathered<br>amounts <sup>h</sup> | Material cost<br>share' (%) |  |
|---------------------|--------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------|--|
| a-SiGe <sup>a</sup> |                                                  |                                                     |                                                          |                                                                   |                                                                                       |                                                                      |                             |  |
| Sn                  | 3.3                                              | 1700                                                | 0.20                                                     | 0.004                                                             | 0.079                                                                                 | 2                                                                    | 0.04                        |  |
| Ge                  | 0.22                                             | 110                                                 | 51                                                       | 0.0003                                                            | 21                                                                                    | 0.1                                                                  | 0.5                         |  |
| Si                  | 0.54                                             | 270                                                 | Negligible                                               | Negligible                                                        | 0.0031                                                                                | 0.000002                                                             | 0.002                       |  |
| AI                  | 2.7                                              | 1400                                                | 0.00032                                                  | Negligible                                                        | 0.00075                                                                               | 0.00005                                                              | 0.008                       |  |

#### 薄膜太陽能電池研討會 2010/11/15 張佳文

# A new concept of thin film $\mu c-Si_{1-x}Ge_x$ : H solar cell

Advantages and opportunities
Challenges



# Challenges of Si thin film solar cells

- Single junction a-Si:H
- Tandem junction a-Si:H/μc-Si:H
  - ➔ only absorbs VIS-near IR light
  - ➔ lower absorption coefficient in long wavelength
  - → Light absorption is not enough in the infrared



### New concept of multi-junction solar cell

New candidate for a bottom cell material

μc-Si<sub>1-x</sub>Ge<sub>x</sub>:H

Ref. G. Ganguly, M. Kondo, A. Matsuda, APL, 69 (1996) 4224.

薄膜太陽能電池研討會 2010/11/15 張佳文 本簡報著作權屬工業技術研究院所有,未經許可不准引用或翻印



### Absorption coefficient



薄膜太陽能電池研討會 2010/11/15 張佳文 本簡報著作權屬工業技術研究院所有.未經許可不准引用或翻印

15

### 



薄膜太陽能電池研討會 2010/11/15 張佳文





薄膜太陽能電池研討會 2010/11/15 張佳文 本簡報著作權屬工業技術研究院所有,未經許可不准引用或翻印

Copyright 2010 ITRI 工業技術研究院



# Advantages of µc-SiGe thin film solar cell



薄膜太陽能電池研討會 2010/11/15 張佳文 本簡報著作權屬工業技術研究院所有,未經許可不准引用或翻印

18



Issues of  $\mu c$ -Si<sub>1-x</sub>Ge<sub>x</sub>:H

- x = 0.2  $\Rightarrow$  IR sensitivities increase monotonically
- $x > 0.1-0.2 \Rightarrow$  IR sensitivities of  $\mu$ c-Si<sub>1-x</sub>Ge<sub>x</sub>:H (1 $\mu$ m) >  $\mu$ c-Si:H (2 $\mu$ m)



 $x > 0.2 \rightarrow$  solar cell performance degrades drastically

薄膜太陽能電池研討會 2010/11/15 張佳文 本簡報著作權屬工業技術研究院所有.未經許可不准引用或翻印



## Problems of $\mu c$ -Si<sub>1-x</sub>Ge<sub>x</sub>:H

● *x* = 0.15-0.2 ⇒ *Jsc max*.

⇒ Jsc gain ~5 mA/cm<sup>2</sup>

•  $x > 0.2 \Rightarrow$  solar cell performances decrease

(charged Ge dangling bonds increase ?)



薄膜太陽能電池研討會 2010/11/15 張佳文



# Performance of triple junction of a-Si:H/ $\mu$ c-Si:H/ $\mu$ c-Si<sub>1-x</sub>Ge<sub>x</sub>:H



薄膜太陽能電池研討會 2010/11/15 張佳文

# Properties of $\mu C-Si_{1-x}Ge_x$ : H thin films

ESR spin densities (neutral dangling bonds)
Carrier densities



## Methods and Experiments



薄膜太陽能電池研討會 2010/11/15 張佳文 本簡報著作權屬工業技術研究院所有,未經許可不准引用或翻印





C.W. Chang\*, T. Matsui, M. Kondo, J. Non-cryst. solids, 354 (2008) 2365.

薄膜太陽能電池研討會 2010/11/15 張佳文

Research Institute



# Carrier concentration and neutral defect density of $\mu c\mbox{-}SiGe$



- Ge-rich → strong p-type: Ge incorporation induces an acceptor state generation (probably at grain boundary)
  - ⇒ Fermi level shift toward the valence band edge.
- ESR signal was undetected when the carrier concentration became comparable to dangling bond density.



### Electrical properties of a-SiGe and µc-SiGe:H with various Ge contents



C.W. Chang, T. Matsui, M. Kondo, J. Non-cryst. solids, 354 (2008) 2365.

- Spin density ⇒ photoconductivity
- The smaller Ge-DB density of µc-Si<sub>1-x</sub>Ge<sub>x</sub>: H is consistent with high photoconductivities

Ge-DB acts as a predominant recombination center

薄膜太陽能電池研討會 2010/11/15 張佳文



# Conclusions

- 1. Ge incorporation provides an enhanced infrared light absorption.
- 2. Solar cell performances decreases with increasing Ge contents.
- 3. Ge dangling bonds are charged in large densities due to the presence of the acceptor states in undoped  $\mu$ c-Si<sub>1-x</sub>Ge<sub>x</sub>:H.
- 4. The neutral Ge dangling bond acts as a predominant recombination center.
- Defect states (dangling bonds) in µc-Si<sub>1-x</sub>Ge<sub>x</sub>:H as an acceptor state closed to valence band, which are located at grain boundaries.

### Ge dangling bond passivation? Acceptor states compensate?



# Thanks for your attention.

**Green Energy and Environment Research Laboratories / ITRI** 

Chia-Wen Chang changcw@itri.org.tw TEL:03-5915371

Nov. 15, 2010